DTI-SNNFRA: Drug-target interaction prediction by shared nearest neighbors and fuzzy-rough approximation
نویسندگان
چکیده
منابع مشابه
Fuzzy-rough nearest neighbour classification and prediction
In this paper, we propose a nearest neighbour algorithm that uses the lower and upper approximations from fuzzy rough set theory in order to classify test objects, or predict their decision value. It is shown experimentally that our method outperforms other nearest neighbour approaches (classical, fuzzy and fuzzy-rough ones) and that it is competitive with leading classification and prediction ...
متن کاملDrug-target interaction prediction by learning from local information and neighbors
MOTIVATION In silico methods provide efficient ways to predict possible interactions between drugs and targets. Supervised learning approach, bipartite local model (BLM), has recently been shown to be effective in prediction of drug-target interactions. However, for drug-candidate compounds or target-candidate proteins that currently have no known interactions available, its pure 'local' model ...
متن کاملFuzzy-Rough Nearest Neighbour Classification
A new fuzzy-rough nearest neighbour (FRNN) classification algorithm is presented in this paper, as an alternative to Sarkar’s fuzzyrough ownership function (FRNN-O) approach. By contrast to the latter, our method uses the nearest neighbours to construct lower and upper approximations of decision classes, and classifies test instances based on their membership to these approximations. In the exp...
متن کاملRefined Shared Nearest Neighbors Graph for Combining Multiple Data Clusterings
We recently introduced the idea of solving cluster ensembles using a Weighted Shared nearest neighbors Graph (WSnnG). Preliminary experiments have shown promising results in terms of integrating different clusterings into a combined one, such that the natural cluster structure of the data can be revealed. In this paper, we further study and extend the basic WSnnG. First, we introduce the use of...
متن کاملKernel-Based Fuzzy-Rough Nearest Neighbour Classification.dvi
Fuzzy-rough sets play an important role in dealing with imprecision and uncertainty for discrete and real-valued or noisy data. However, there are some problems associated with the approach from both theoretical and practical viewpoints. These problems have motivated the hybridisation of fuzzy-rough sets with kernel methods. Existing work which hybridises fuzzy-rough sets and kernel methods emp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLOS ONE
سال: 2021
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0246920